Edge-exchangeable graphs and sparsity

نویسندگان

  • Diana Cai
  • Trevor Campbell
  • Tamara Broderick
چکیده

A known failing of many popular random graph models is that the Aldous–Hoover Theorem guarantees these graphs are dense with probability one; that is, the number of edges grows quadratically with the number of nodes. This behavior is considered unrealistic in observed graphs. We define a notion of edge exchangeability for random graphs in contrast to the established notion of infinite exchangeability for random graphs—which has traditionally relied on exchangeability of nodes (rather than edges) in a graph. We show that, unlike node exchangeability, edge exchangeability encompasses models that are known to provide a projective sequence of random graphs that circumvent the Aldous–Hoover Theorem and exhibit sparsity, i.e., sub-quadratic growth of the number of edges with the number of nodes. We show how edge-exchangeability of graphs relates naturally to existing notions of exchangeability from clustering (a.k.a. partitions) and other familiar combinatorial structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge exchangeable models for network data

Exchangeable models for vertex labeled graphs cannot replicate the large sample behaviors of sparsity and power law degree distributions observed in many network datasets. Out of this mathematical impossibility emerges the question of how network data can be modeled in a way that reflects known empirical behaviors and respects basic statistical principles. We address this question by observing ...

متن کامل

Sparsity Measure of a Network Graph: Gini Index

This article examines the application of a popular measure of sparsity, Gini Index, on network graphs. A wide variety of network graphs happen to be sparse. But the index with which sparsity is commonly measured in network graphs is edge density, reflecting the proportion of the sum of the degrees of all nodes in the graph compared to the total possible degrees in the corresponding fully connec...

متن کامل

CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS

In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs

Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016